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Note 

The Error Analysis of the Algebraic Method 

for Solving the Schriidinger Equation 

Recently [l-3], a new method was introduced in order to solve numerically the 
one-dimensional time-independent SchrGdinger equation 

The central idea of this method is to transform the SchrSdinger equation into an 
algebraic system of linear equations which is obtained by approximating the poten- 
tial V(r) with a sequence of step functions. 

This algebraic method (AM) was considered by Canosa and de Oliveira [l] for 
the discrete spectrum of energies and by Ixaru [2, 31 for the continuum spectrum. 
In the paper [l], AM is said to be a first-order method, that is, the absolute error 
both in the eigenvalues and eigenfunctions is O(h) where h is the spatial step size. 
This is a somewhat discouraging result and might impede the spreading of AM 
despite of the real advantages of this method. A more detailed analysis of the 
error appears accordingly very necessary. We do it in this paper. Our result is that 
AM is a second-order method. At this point we note that another formalism for 
solving Eq. (1) and which is related with AM was recently introduced by Gordon 
[4]. He discusses at large the case when the potential V is approximated in each 
interval by a linear function of r which fits it as well as its first derivative at the 
center of the interval (the line MN on Fig. 1). He claims that his method is a third- 
order one but, as we show at the end of this paper, it is a second-order method, i.e. 
it has the same accuracy as AM. The formalism of his method is, however, signifi- 
cantly more complicate than that of AM. 

Before starting the proof we notice a very nice peculiarity of AM: the truncation 
error of the method is clearly separated from the computation error. That is to 
say, the only approximation is to replace V(r) by a sequence of step functions. Once 
the approximate problem is obtained, it is integrated exactly except for round-off 
error. 

The round-off error is negligible. We studied it for the potentials occuring in 
the penetration problem of the spontaneous alpha decay. We saw that the error is 
well under 0.01 % when the number of intervals is as large as 1200. Usually and 
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FIG. 1. The potential V(r) and its two approximations: the potential V, a constant, equal 
to the arithmetic mean of the extreme values of V in each interval and the chord-potential Y? 
The line MN is the linear approximation of Gordon [4]. 

especially for the discrete spectrum, the number of intervals is very much smaller 
(several hundreds) and this makes the round-off error surely smaller than 0.01 %. 
Our problem is, therefore, reduced to the study of the truncation error. 

We limit our proof to the discrete spectrum problem only. Let I = [a, b] be the 
domain of (1) whose length is L. We divide it in intervals [ri , ri+,] of length 
h(r, = a, ra = b and i = 1, 2 ,..., q - 1) and approximate V in each interval by a 
constant. We denote by V and 9 the potentials that in each interval approximate 
V by the arithmetic mean value and by the corresponding chord, respectively. They 
are represented on Fig. 1 by the lines AB and CD. The eigenvalues and eigen- 
functions of (1) for the potentials V and Q are denoted by E, , & and v,, , qn 
respectively. As stated above, our aim is to prove that the eigenvalues E, and E, as 
well as the eigenfunctions yn and #, coincide within O(h2). As this comparison 
cannot be done directly, we proceed in two stages. The first stage consists in 
comparing E, with E, and vn with qn , while in the second stage one compares 
Zn with E,, and r& with 4, . The results obtained in the two stages will lead to the 
stated result. 

In order to make the comparisons required by both stages, we use the results of 
the first order perturbation theory. They connect ~,l and v,,l of the potential v1 
with E,~ and q’n2 of V2 = V’ + d V as follows: 

(3) 

From these equations one sees that the size of the difference between the eigen- 
values and the eigenfunctions of the unperturbed and perturbed problems depends 
of the size of the quantities (vsl ] d V I ynl) for any k and n. 
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The task of the first stage is therefore easily completed by applying (2) and (3) 
for V1= V and V2 = Q and evaluating the magnitude of (P)~ I q - V I y,). We 
write 

(yk 1 Q - V 1 p,) = ‘fl jTi+l dr yk*(r)(7 - 9’) y,(r). 
is1 li (4) 

The integrals in the sum have the same order of magnitude. The solution of the 
SchrSdinger equation for V (which is a constant in each interval) reads 

y,(r) = Ani exp(wir) + Bei exp(--w,r) (5) 

in the interval [ri , ri+,]. Here wi = [2mP(~, - %‘“)]1/2. Of course, oi is real or 
imaginary depending on whether E, is larger or smaller than V. If we use the new 
variable 6 = r - ri(O < 6 < h), Fig. 1 shows us that 

where c = [V(ri+l) - V(ri)]/h. The integral over [ri , ri+,] in (4) reads 

Ji = c 
s h da yrc*(ri + @(A - i) v,(ri + 8). (7) 

0 

We now make use of the Taylor expansion of P)~ in powers of 6 

which, inserted in (7) and after a little calculation, gives 

The neglected terms are of the order h”(p > 3). In Equation (8), olji and /3: are 
the values of yi and of its first derivative at ri , respectively. The conclusion is that 
each integral of the sum in (4) gives a contribution of order h3. As this sum consists 
of q - 1 terms and q - 1 = U-l the result of the first stage is 

i.e., E, and i, as well as ?)n and @, coincide except for an error O(h2). 
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With respect to the second stage we use once more Eqs. (2) and (3), this time 
for V1 = 9 and V2 = V and calculate the magnitude of the quantity 
( qlc j V - V / C&J. We proceed, as above, 

and employ the well-known trapezoidal method of numerical integration, 

J =a dxf(x) = (x2 - x1) f(xl) ; f(x2) - A (x2 - Xl)3fX(f), (12) $1 
where the derivative is taken at a certain point 5 E [x1 , x2]. Each integral of the 
sum in (11) can be calculated by using (12). We observe that in our case the inte- 
grand vanishes at the ends of the integration interval as the potential difference 
does so; therefore, 

s “+I dr $k*(r)(V - 9) %(r) = - $ $ [qk*(v - 7) qnlTze . (13) 
Ti 

There are q - 1 such integrals in (11) and q - 1 = L/z-l. This means that 

(& 1 v - 9 1 $5,) - h2. (14) 

The second stage therefore shows that E, and E,, as well as $& and +!J~ coincide 
except for an error O(h2). Now by recalling the result of the first stage of the proof, 
one concludes that the eigenvalues and the eigenfunctions estimated by use of AM 
coincide, except for an error O(h2), with the exact ones, provided the approximating 
V is the arithmetic mean value of the extreme values of V in each interval. 

We now consider the truncation error in the Gordon method. We apply the 
formulas (2) and (3) for V1 = V and V2 = V, . As stated, V, is in each interval 
the linear function of r which fits V as well as its derivative at the center of the 
interval (the line MN on Fig. 1). We have 

We focus our attention on the interval [ri , ri+J, denote its center by Ri , introduce 
the new variable y = r - Ri (--h/2 < y < h/2) and make use of the Taylor 
expansions of V and Gj in powers of y: 
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The neglected terms are of the order yP(p > 3). By its very definition, the potential 
V, is the sum of the first and second terms in the right hand side of Eq. (16) and 
therefore 

v -vz-?cdX G 2! dr2 I ,.+’ (18) 

We introduce (17) and (18) in the integral over the interval [ri , I+~+,] in Eq. (15) to 
obtain 

plus terms of higher order in h. Equation (19) shows that each term in the sum of 
the right hand side of Eq. (15) gives a contribution of order h3, and as there are 
q - 1 such terms and q - 1 = U-l, the result is that 

<A I VG - v I $4x> - h2 (20) 

i.e., the Gordon method in which V is approximated by a linear function is a 
second-order method. Of course, the more accurate the approximating function 
V, is, the higher is the order of the Gordon method. For example, if V, is the 
sum of the first, second and third terms of the Taylor expansion, Eq. (16), the 
corresponding Gordon method is a third-order one. 
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